Bag of ML Words

ML = Machine Learning, Music Love, and Miscellaneous things in daily Livings

Chainerでlearning rateを任意に操作

qiita.com

 

これに書いてあるとおりですが、やり方わかって実際動いたので貼ってみる。

 

class LrScheduler(extension.Extension):
  trigger = (1, 'epoch')
  def __init__(self, base_lr, epochs, optimizer_name='main', lr_name='lr'):
     self._base_lr = base_lr
    self._epochs = [int(e) for e in epochs]
    self._optimizer_name = optimizer_name
    self._lr_name = lr_name
  def __call__(self, trainer):
    optimizer = trainer.updater.get_optimizer(self._optimizer_name)
    e = trainer.updater.epoch

    if e < self._epochs[0]:
      lr = self._base_lr * 0.1 + e * 0.9 * self._base_lr / self._epochs[0]
    elif e > self._epochs[1]:
      lr = self._base_lr * (0.9 ** (e - self._epochs[1]))
    else:
      lr = self._base_lr
    setattr(optimizer, self._lr_name, lr)
# end class
setattr(optimizer, 'lr', 0.1*args.lr)

trainer.extend(LrScheduler(base_lr=args.lr, epochs=('3', '5')))

 

 これで、epoch3までかけてlrが徐々に増加することで突然の局所解を回避。epoch5までは定常飛行して、epoch7から徐々になましていく、という動きが実現できる。

 

progressを貼り付けるとこんな感じ。

epoch elapsed_time lr           main/loss 
1        9.02064          0.001    2.81905 
2        14.4791          0.004    0.757175 
3        19.9546          0.007    0.333922 
4        25.3488          0.01      0.73813 
5        31.0634         0.01       1.48048 
6        37.1175          0.01      1.3194 
7        42.8478         0.009     0.645383 
8        48.345           0.0081   0.404334 
9       53.6649          0.00729 0.359146